TRATAMIENTOS AVANZADOS DE AGUAS RESIDUALES - Enciclopedia de Tareas

TRATAMIENTOS AVANZADOS DE AGUAS RESIDUALES


TRATAMIENTOS AVANZADOS DE AGUAS RESIDUALES: EL OZONO Y LA REUTILIZACIÓN DE AGUA RESIDUAL

Si el agua que ha de recibir el vertido requiere un grado de tratamiento mayor que el que puede aportar el proceso terciario porque el efluente va a reutilizarse, es necesario un tratamiento avanzado de las aguas residuales. A menudo se usa el término tratamiento terciario como sinónimo de tratamiento avanzado, pero no son exactamente lo mismo.

El tratamiento terciario, o de tercera fase, suele emplearse básicamente, como hemos indicado, para eliminar sales inorgánicas, mientras que el tratamiento avanzado incluye pasos adicionales para mejorar la calidad del efluente eliminando los contaminantes recalcitrantes. Hay procesos que permiten eliminar más de un 99% de los sólidos en suspensión y reducir la DBO5 en similar medida.

Los sólidos disueltos se reducen por medio de procesos como la ósmosis inversa y la electrodiálisis. La eliminación del amoníaco, la desnitrificación y la precipitación de los fosfatos pueden reducir el contenido en nutrientes. Si se pretende la reutilización del agua residual, la desinfección por tratamiento con ozono es considerada el método más fiable.

Es probable que en el futuro se generalice el uso de estos y otros métodos de tratamiento de los residuos a la vista de los esfuerzos que se están haciendo para conservar el agua mediante su reutilización.


EL OZONO
Desde el punto de vista químico, el ozono es una forma alotrópica del oxígeno, formada por tres átomos de este elemento, cuya función más conocida es la de protección frente a la peligrosa radiación ultravioleta del sol; pero también es un potente oxidante y desinfectante con gran variedad de utilidades. La más destacada es la desinfección de aguas.

Es, después del flúor, el compuesto más oxidante, debido a su facilidad para captar electrones. De rápida descomposición y, a igualdad de condiciones, más estable en agua que en aire.

Se trata de un gas azul pálido e inestable, que a temperatura ambiente se caracteriza por un olor picante, perceptible a menudo durante las tormentas eléctricas, así como en la proximidad de equipos eléctricos, según evidenció el filósofo holandés Van Marun en el año 1785.

MECANISMO DE ACCIÓN
Cuando este gas es inyectado en el agua, puede ejercer su poder oxidante mediante dos mecanismos de acción:

1. Oxidación directa de los compuestos mediante el ozono molecular.
2. Oxidación por radicales libres hidroxilo.

Estos radicales libres, generados en el agua por combinación de ésta con las moléculas de ozono, constituyen uno de los más potentes oxidantes, con un potencial de 2,80 V. No obstante, presentan el inconveniente de que su vida media es del orden de microsegundos, aunque la oxidación que llevan a cabo es mucho más rápida que la oxidación directa por moléculas de ozono.

De los oxidantes más utilizados en el tratamiento de aguas, los radicales libres de hidroxilo y el ozono tienen el potencial más alto (son los más oxidantes). Ello explica la gran eficacia del ozono como desinfectante, así como su capacidad para oxidar materia orgánica del agua, eliminar olores y sabores desagradables, y degradar compuestos químicos de diversa naturaleza.

Dependiendo de las condiciones del medio, puede predominar una u otra vía de oxidación: En condiciones de bajo pH, predomina la oxidación molecular.

Bajo condiciones que favorecen la producción de radicales hidroxilo, como es el caso de un elevado pH, exposición a radiación ultravioleta, o por adición de peróxido de hidrógeno, empieza a dominar la oxidación mediante hidroxilos.

DESINFECCIÓN
A lo largo de los distintos tratamientos de una EDAR se produce una notable disminución del contenido de gérmenes patógenos en el agua residual. Sin embargo, como hemos señalado, suele ser necesario complementar el tratamiento con una desinfección si se pretende reutilizar el efluente.

La desinfección tiene como objetivo la destrucción selectiva de bacterias y virus patógenos presentes en el agua residual, utilizándose cuando la masa de agua receptora puede tener un uso recreativo, de baño, o incluso de abastecimiento. Se realiza mediante la adición de productos químicos como cloro, bromo, iodo o permanganato potásico, lo cual puede entrañar una serie de riesgos para el medio receptor por lo que dichos productos deben utilizarse con precaución.

De hecho, el agente de más amplio uso es el cloro, que presenta graves desventajas no sólo en lo que al medio concierne, sino también en lo que respecta a cuestiones de Salud Pública. Así, si el agua a desinfectar con cloro o sus derivados contiene materias orgánicas o contaminantes químicos, se pueden originar compuestos tóxicos o que menoscaban las características organolépticas del agua.

Lo más seguro para la consecución de una desinfección óptima sin subproductos tóxicos, es el tratamiento con ozono, reconocido como desinfectante en la potabilización de aguas en los países más avanzados y comprometidos con el medio, entre ellos el nuestro, estando recogido su uso por el Ministerio de Sanidad y Consumo.
La base de la acción bactericida de cualquier agente suele ser la oxidación de componentes fundamentales para la supervivencia de los microorganismos. La capacidad de oxidar con mayor o menor facilidad dichas estructuras marca la diferencia, en cuanto a eficacia, de los distintos compuestos utilizados normalmente en desinfección. Como hemos visto, el ozono es, dentro de los compuestos normalmente utilizados en desinfección de aguas, el que presenta una mayor capacidad oxidante, lo que quiere decir mayor eficiencia biocida.

La eficacia del ozono como desinfectante está de sobra probada, habiéndose evidenciado que es capaz de destruir esporas de Bacilus subtilis, la forma más resistente de los microorganismos.

De hecho, el ozono es efectivo frente a gran número de microorganismos sobre los que actúa con gran rapidez, a bajas concentraciones y en un amplio rango de pH, debido a su alto potencial de oxidación.

La oxidación directa de la pared celular constituye su principal modo de acción. Esta oxidación provoca la rotura de dicha pared, propiciando así que los constituyentes celulares salgan al exterior de la célula. Asimismo, la producción de radicales hidroxilo como consecuencia de la desintegración del ozono en el agua, provoca un efecto similar al expuesto.

Los daños producidos sobre los microorganismos no se limitan a la oxidación de su pared: el ozono también causa daños a los constituyentes de los ácidos nucleicos (ADN y ARN), provocando la ruptura de enlaces carbono-nitrógeno, lo que da lugar a una despolimerización. Los microorganismos, por tanto, no son capaces de desarrollar inmunidad al ozono como hacen frente a otros compuestos.

Fuente:
CONAMA-8
Congreso Nacional del Medio Ambiente
Cumbre de Desarrollo Sostenible