¿QUÉ ES LA SIMPLIFICACIÓN DE RADICALES?



La simplificación de radicales como lo dice su nombre es la simplificación o reducción de un radical a su más simple expresión. Un radical está en su más simple expresión cuando la cantidad subradical no posee ningún factor cuyo exponente sea mayor igual que el índice de la raíz. Cuando hablamos de cantidad subradical no referimos a toda la expresión que se ubica dentro del símbolo de raíz, por ejemplo: ∛27 en este caso la cantidad subradical es 27.

Para simplificar un radical a su más simple expresión se hace de las siguientes formas:

-Lo primero que tenemos que hacer es descomponer las cantidades subradical en factores.

-El segundo paso es dividir el exponente de cada cantidad, siempre y cuando el exponente de la cantidad subradical sea mayor o igual que el índice.

-El factor de la expresión subradical sale de un radical con un exponente que es igual al cociente obtenido por el peso anterior.

-El factor de la expresión subradical queda bajo el radical con un exponente igual al resto de la división en el paso 2.

-Cuando el exponente de un factor en la expresión subradical es menor que el índice de la raíz, dicho factor queda en forma original dentro del radical.

Ejemplo:

Simplifica el siguiente radical:



Se procede así:



Entonces:



Si el índice del radical y todos los exponentes de la cantidad subradical admiten un divisor común, se simplifican el radical dividiendo el índice y todos los exponentes por el divisor común.

Ejemplo:

Simplificar:






Aquí 15, 3 y 9 son divisibles por 3, luego,



Otra forma de simplificar el radical es considerando los casos siguientes:

a) Que el exponente del factor sea un múltiplo del índice.
b) Que el exponente del factor no sea un múltiplo del factor.

En el primer caso, el factor se saca del radical con un exponente igual al consiente de dividir dicho exponente por el índice.

En el segundo caso, el exponente del factor no es múltiplo del índice, entonces cada potencia puede descomponerse en el producto de otras dos, una de las cuales tiene por exponente el mayor múltiplo del índice contenido en el exponente primitivo.